Package: LMest 3.2.3

LMest: Generalized Latent Markov Models

Latent Markov models for longitudinal continuous and categorical data. See Bartolucci, Pandolfi, Pennoni (2017)<doi:10.18637/jss.v081.i04>.

Authors:Francesco Bartolucci [aut, cre], Silvia Pandolfi [aut], Fulvia Pennoni [aut], Alessio Farcomeni [ctb], Alessio Serafini [ctb]

LMest_3.2.3.tar.gz
LMest_3.2.3.zip(r-4.5)LMest_3.2.3.zip(r-4.4)LMest_3.2.3.zip(r-4.3)
LMest_3.2.3.tgz(r-4.4-x86_64)LMest_3.2.3.tgz(r-4.4-arm64)LMest_3.2.3.tgz(r-4.3-x86_64)LMest_3.2.3.tgz(r-4.3-arm64)
LMest_3.2.3.tar.gz(r-4.5-noble)LMest_3.2.3.tar.gz(r-4.4-noble)
LMest_3.2.3.tgz(r-4.4-emscripten)LMest_3.2.3.tgz(r-4.3-emscripten)
LMest.pdf |LMest.html
LMest/json (API)

# Install 'LMest' in R:
install.packages('LMest', repos = c('https://francescobartolucci.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • fortran– Runtime library for GNU Fortran applications
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

4.40 score 3 stars 42 scripts 654 downloads 5 mentions 33 exports 12 dependencies

Last updated 13 days agofrom:36b2315eae. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-win-x86_64OKNov 06 2024
R-4.5-linux-x86_64OKNov 06 2024
R-4.4-win-x86_64OKNov 06 2024
R-4.4-mac-x86_64OKNov 06 2024
R-4.4-mac-aarch64OKNov 06 2024
R-4.3-win-x86_64OKNov 06 2024
R-4.3-mac-x86_64OKNov 06 2024
R-4.3-mac-aarch64OKNov 06 2024

Exports:bootstrapbootstrap_lm_basicbootstrap_lm_basic_contbootstrap_lm_cov_latentbootstrap_lm_cov_latent_contdecodingdrawdraw_lm_basicdraw_lm_basic_contdraw_lm_cov_latentdraw_lm_cov_latent_contdraw_lm_mixedest_lm_basicest_lm_basic_contest_lm_cov_latentest_lm_cov_latent_contest_lm_cov_manifestest_lm_mixedest_mc_basicest_mc_covlmestlmestContlmestDatalmestDecodinglmestFormulalmestMclmestMixedlmestSearchlong2matriceslong2widematrices2longsesearch.model.LM

Dependencies:diagramFormulalimSolvelpSolveMASSmclustmixMultiLCIRTmvtnormquadprogscatterplot3dshape

Introduction to LMest

Rendered fromvignetteLMest.Rmdusingknitr::rmarkdownon Nov 06 2024.

Last update: 2024-08-31
Started: 2020-09-12

Readme and manuals

Help Manual

Help pageTopics
Overview of the Package LMestLMest-package LMest
Parametric bootstrapbootstrap bootstrap.LMbasic bootstrap.LMbasiccont bootstrap.LMlatent bootstrap.LMlatentcont
Parametric bootstrap for the basic LM modelbootstrap_lm_basic
Parametric bootstrap for the basic LM model for continuous outcomesbootstrap_lm_basic_cont
Parametric bootstrap for LM models with individual covariates in the latent modelbootstrap_lm_cov_latent
Parametric bootstrap for LM models for continuous outcomes with individual covariates in the latent modelbootstrap_lm_cov_latent_cont
Criminal datasetdata_criminal_sim
Dataset about marijuana consumptiondata_drug
Employment datasetdata_employment_sim
Health datasetdata_heart_sim
Multivariate Longitudinal Continuous (Gaussian) Datadata_long_cont
Marketing datasetdata_market_sim
Self-reported health status datasetdata_SRHS_long
Perform local and global decodingdecoding
Draw simulated sample from a Generalized Latent Markov Modeldraw draw.LMbasic draw.LMbasiccont draw.LMlatent draw.LMlatentcont draw.LMmixed
Draw samples from the basic LM modeldraw_lm_basic
Draw samples from the basic LM model for continuous outcomesdraw_lm_basic_cont
Draw samples from LM model with covariaates in the latent modeldraw_lm_cov_latent
Draw samples from LM model for continuous outcomes with covariaates in the latent modeldraw_lm_cov_latent_cont
Draws samples from the mixed LM modeldraw_lm_mixed
Estimate basic LM modelest_lm_basic
Estimate basic LM model for continuous outcomesest_lm_basic_cont
Estimate LM model with covariates in the latent modelest_lm_cov_latent
Estimate LM model for continuous outcomes with covariates in the latent modelest_lm_cov_latent_cont
Estimate LM model with covariates in the measurement modelest_lm_cov_manifest
Estimate mixed LM modelest_lm_mixed
Estimate basic Markov chain (MC) modelest_mc_basic
Estimate Markov chain (MC) model with covariatesest_mc_cov
Class ''LMbasic''LMbasic-class
Class ''LMbasiccont''LMbasiccont-class
Estimate Latent Markov models for categorical responseslmest
Estimate Latent Markov models for continuous responseslmestCont
Data for 'LMest' functionslmestData
Perform local and global decodinglmestDecoding lmestDecoding.LMbasic lmestDecoding.LMbasiccont lmestDecoding.LMlatent lmestDecoding.LMmanifest lmestDecoding.LMmixed
Formulas for 'LMest' functionslmestFormula
Estimate Markov Chain modelslmestMc
Estimate mixed Latent Markov modelslmestMixed
Search for the global maximum of the log-likelihoodlmestSearch
Class ''LMlatent''LMlatent-class
Class ''LMlatentcont''LMlatentcont-class
Class ''LMmanifest''LMmanifest-class
Class ''LMmanifestcont''LMmanifestcont-class
Class ''LMmixed''LMmixed-class
From data in the long format to data in array formatlong2matrices
From data in the long format to data in the wide formatlong2wide
From data in array format to data in long formatmatrices2long
Class ''MCbasic''MCbasic-class
Class ''MCcov''MCcov-class
National Longitudinal Survey of Youth dataNLSYlong
Plots for Generalized Latent Markov Modelsplot.LMbasic plot.LMbasiccont plot.LMlatent plot.LMlatentcont plot.LMsearch
Print the outputprint.LMbasic print.LMbasiccont print.LMlatent print.LMlatentcont print.LMmanifest print.LMmixed print.LMsearch print.MCbasic print.MCcov
Dataset about income dynamicsPSIDlong
Dataset about job satisfactionRLMSdat
Dataset about job satisfactionRLMSlong
Standard errorsse se.LMbasic se.LMbasiccont se.LMlatent se.LMlatentcont
Search for the global maximum of the log-likelihoodsearch.model.LM
Summary of LM fitssummary.LMbasic summary.LMbasiccont summary.LMlatent summary.LMlatentcont summary.LMmanifest summary.LMmixed summary.LMsearch summary.MCbasic summary.MCcov
Summary and plot of 'lmestData'plot.lmestData print.lmestData summary.lmestData